If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+115x-100=0
a = 1; b = 115; c = -100;
Δ = b2-4ac
Δ = 1152-4·1·(-100)
Δ = 13625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13625}=\sqrt{25*545}=\sqrt{25}*\sqrt{545}=5\sqrt{545}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(115)-5\sqrt{545}}{2*1}=\frac{-115-5\sqrt{545}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(115)+5\sqrt{545}}{2*1}=\frac{-115+5\sqrt{545}}{2} $
| w−5=5.1 | | 90+90+16-6+15x=360 | | 180+2x=3x-40×3 | | -3x-2(-5x+13)=44 | | -2b-1.7=3.9 | | v4=4 | | (73/4)x= | | 4p=16.28 | | x-1/7=27/7 | | g/3=4.19 | | C=1500x+400 | | 6p-9=p+6 | | -.2+x=120,000 | | k−5.3=8.61 | | 5y-7=3.5 | | 3(d-1)=4 | | 16.3*k+19.2+7.5*k=-64.1 | | 6x-9x=8-14 | | 5x+9x=58 | | 13x-28+46-4x=180 | | 3x+13=(x-7)+(6x-6) | | 3f+6=7f-36 | | (3x+13)=(6x-6)+(x-7) | | x+(x+2)=224 | | 3x+3+x-13+x=180 | | 2x-4=12x-3 | | 0.9x+(x-20)=830 | | 8x-12+128=180 | | 6=14+h | | 5(x-8)=2x-7 | | 30=5d-10 | | X=(x-5)/5 |